HIGHER TECHNICAL INSTITUTE

MECHANICH! EXCINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF MATERIALS HANDLING SYSTEM FOR A ROTTLING PLANT

M/794

BY: CHARIS DEMETRICU

JUNE 1997

DESIGN OF MATERIALS HANDLING SYSTEM FOR A BOTTLING PLANT

by

Charis Demetriou

Project Report Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfilment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

July 1997

Dedicated to my parents for their praiseworthy and valuable offer to me.

CONTENTS

Page

ACKNOWLEDGEMENT

SUMMARY

CHAPTER 1 INTRODUCTION

1.1	Definition of Automation	2
1.1.1	Evolution of Automation	2
1.1.2	Reasons for introducing Automation	5
1.2	Automation and production quantity	5
1.2.1	Types of production	5
1.3	Applications of automation	7
1.4	Functions in manufacturing	8
1.4.1	Processing operations	9
1.4.2	Assembly operations	11
1.4.3	Material handling and storage	12
1.4.4	Inspection and testing	12
1.4.5	Control	12
1.5	Plant layout	13
1.6	Automation strategies	14

CHAPTER 2 MATERIAL HANDLING

2.1	Introduction	19
2.2	The material handling function	19
2.3	Types of material handling equipment	19
2.4	Conveyor systems	22
2.4.1	Types of conveyors	23
2.4.2	Routing and other functions	29
2.5	Automated guided vehicle systems	30

2.5.1	Types of automated guided vehicle systems	30
2.5.2	Applications	34
2.5.3	Vehicle guidance and routing	35

CHAPTER 3 MATERIALS TO BE HANDLED

3.1	Consideration of materials	38
3.2	Movement conditions	39

CHAPTER 4 MANUFACTURING PROCEDURES

FOR CARLSBERG BEER

4.1	Raw materials used for the production of beer	41
4.2	Stages of production of beer	42
4.2.1	Brewhouse	42
4.2.2	Beer processing Department	44
4.2.3	The bottling / canning and kegging line	45

CHAPTER 5 IMPROVEMENTS TO THE

MATERIAL HANDLING EQUIPMENT OF THE

CARLSBERG'S NEW BOTTLING HALL

5.1	Introduction	58
5.2	The weak points that appeared within the bottling /	58
	canning line	
5.2.1	First point	58
5.2.2	Second point	61
5.2.2.1	Description of the main operations that occur at	61
	the second weak point (turning point)	
5.2.2.2	Observations	63
5.3	Improvements to the weak points that appeared	64
	within the bottling canning line	

5.3.1	Improvement to the first point (new empty - bottle	64
	inspection machine	
5.3.1.1	Principle of operation of the new empty-bottle	64
	inspection machine	
5.3.1.2	Inspection Units	70
5.3.1.3	Inspection Accuracy of the empty-bottle	74
	inspection machine	
5.3.1.4	Machine data	76
5.3.1.5	Advantages of the machine	77
5.3.1.6	Basic price	77
5.3.2	Improvements to the second point (turning point)	77
5.3.2.1	Requirements of the factory	78
5.3.2.2	Rejection System	81
5.3.2.3	System for placing card-boards into crates	83

CHAPTER 6 ACCOUNT OF THE SAVINGS INCURRED BY EMPLOYING THE NEW MATERIAL EQUIPMENT

6.1	Accounts	88
6.1.1	Human Being VS Robot system	88
6.1.2	Old Inspection System (O.I.S) VS	89
	New Inspection System (N.I.S)	

CHAPTER 7 DESIGN OF THE MATERIALS HANDLING SYSTEM FOR A NEW DEPARTMENT THAT SHOULD PRODUCE PLASTIC BOTTLES (FOR WATER)

7.1	Introduction	91
7.2	Functional principles of the machine	93
7.2.1	Preform loader	93

7.2.2.		Preform transport	94
7.2.3		Heating Oven	94
7.2.4		Bottle blowing	96
7.3		Advantages of the machine	99
7.4		Technical Data of the machine	100
7.4.1		General data	100
7.4.2		Machine	100
7.4.3		Press	101
7.4.4		Preform conveyor system	101
7.4.5		Drawing and Blowing	101
7.4.6		Oven	101
7.4.7		Hydraulic system	102
7.4.8		Preforms loader	102
7.5		Main dimensions of the machine	103
7.6		Dimensions of the preforms	104
7.7		Design the material handling system	105
		for the new department	
7.8	*	Description of the material handling system	106
		designed for the new department	

CHAPTER 8 CONCLUSIONS

ACKNOWLEDGEMENTS

I would like to thank Dr. L Lazaris, lecturer in Mechanical Engineering, at H.T.I. for his valuable assistance and guidance offered to me in carrying out the presented diploma project.

I would also like to express my thanks to Mr. A. Armenakis, Chief Engineer, Mr. Charalambos Savva, Technician Engineer and personnel in CARLSBERG who supplied me with very useful information relevant to the subject of the diploma project.

CHARIS DEMETRIOU 3rd year student in Mechanical Engineering H.T.I.

DESIGN OF MATERIALS HANDLING SYSTEM FOR A BOTTLING PLANT

by : CHARIS DEMETRIOU

SUMMARY

The objectives of this project were to study the Materials Handling System of an existing manufacturing industry and afterwards, to proceed with a design of a new system having in mind all the appropriate improvements.

The study was carried out in CARLSBERG Co., a company that produces beer. Having observed and examined all basic departments were the production of beer takes place, I was applied to a research within the bottling plant department to improve its material handling system.

Starting from the first chapter of this project an introduction is made in order to cover the basics about automation since many material handling systems nowadays are designed to be automated.

In the second chapter the coverage focuses on the material handling function, its types of equipment and their characteristics.

In the third chapter a reference is made about the consideration of materials and movement conditions.

In the fourth chapter the manufacturing procedures for CARLSBERG beer are presented in detail.

Proceeding with the fifth chapter, improvements take place to the material handling equipment of the CARLSBERG'S new bottling hall.

In chapter six, an account of savings is presented in order to employ the new material handling equipment.

In chapter seven, the materials handling system for a new department that should produce plastic bottles, is designed.

In chapter eight the general conclusions are presented taken from the whole project.

CHAPTER 1

INTRODUCTION

<

CHAPTER 1 - INTRODUCTION

Until about the 1950s, most manufacturing operations were carried out on traditional machinery, such as lathes, milling machines, and presses, which lacked flexibility and required considerable skilled labor. Each time a different product was manufactured, the machinery had to be retooled, and the movement of materials had to be rearranged. The development of new products and parts with complex shapes required numerous trial-and-error attempts by the operator to set the proper processing parameters on the machine. Furthermore, because of human involvement, making parts that were exactly alike was difficult.

These circumstances meant that processing methods were generally inefficient and that labor costs were a significant portion of overall production costs. The need for reducing the labor share of product costs gradually became apparent, as did the need to improve the efficiency and flexibility of manufacturing operations. This need was particularly significant in terms of increased competition, both domestic and global.

The crucial step in improving the efficiency of manufacturing operations was automation, from the Greek word automatos, meaning self-acting. The word automation was coined in the mid-1940s by the U.S. automobile industry to indicate automatic handling of parts between productions machines, together with their continuous processing at the machines. During the past four decades, major advances and breakthroughs in the types and extend of automation have occurred. These important developments were made possible largely through rapid advances in the capacity an sophistication of computers and control systems.