HIGRER TECHNICAL INSTITUTE

NECRANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING SYSTEM AND WATER SUPPLY SERVISES FOR A SCHOOL

XENIOS PAPASTAYROU

1/1023

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT


DESIGN OF A CENTRAL HEATING SYSTEM AND WATER SUPPLY SERVICES FOR A SCHOOL

BY

XENIOS PAPASTAVROU

M/1023

JUNE 2006

DESIGN OF A CENTRAL HEATING SYSTEM AND WATER SUPPLY SERVICES FOR A SCHOOL

(M/1023)

BY

XENIOS PAPASTAVROU

Project Supervisor: Mr. Theodoros Symeou

Project Report

Submitted to

The Department of Mechanical Engineering of the Higher Technical Institute

Nicosia Cyprus

In partial fulfillment of the requirements for award of the

Diploma of Mechanical Engineering

HIGHER	PROJECT NO
TECHNICAL INSTITUTE	3670

3

Contents

		Page
Table	e of Contents	4
List of Tables		7
Ackn	owledgments	8
ABSTRACT		9
INTR	ODUCTION	10
CHA	PTER 1 - ESTMATION OF THE HEATING LOAD OF THE	
<u>SCHO</u>	DOL	12
1.1	INTRODUCTION	13
1.2	TYPES OF HEAT LOSSES	13
	1.2.1 Fabric losses	- 13
	1.2.2 Infiltration losses	16
1.3	OVERALL HEAT TRANSMITTANCE COEFFICIENT	17
	1.3.1 U-value calculation	19
	1.3.1.1 External wall	19
	1.3.1.2 Internal wall (Brick 200mm)	20
	1.3.1.3 Internal wall (Brick 100mm)	21
	1.3.1.4 External concrete	22
	1.3.1.5 Internal concrete	23
	1.3.1.6 Floor	24
	1.3.1.7 Roof	25
	1.3.2 Table of structure U-value	26
1.4	Climate and Design Conditions in Cyprus	26
	1.4.1 Design Conditions	27
	1.4.2 Outside design conditions	27
	1.4.3 Inside design conditions	27
	1.4.4 AT Calculation	28
1.5	CALCULATIONS OF HEAT LOAD	28
	1.5.1 Method of calculation of heat losses	29
	1.5.2 Table of heat losses of each room	29
<u>CHA</u>	PTER 2 - SELECTION OF THE SYSTEM EMPLOYED	31
2.1	INTRODUCTION	32

CHAPTER 3 - EQUIPMENT AND PIPE SIZING		36
3.1	SELECTION OF HEAT EMITTERS	37
	3.1.1 Procedure of selecting the panel radiator	43
	3.1.2 Radiators selected	44
3.2	PIPE SIZING	47
	3.2.1 Emission Characteristics	47
	3.2.2 Design water temperature	48
3.3	Procedure for pipe sizing	48
	3.3.1 TABLES FOR PIPE SIZING	49
CHA	PTER 4 - SELECTION OF APPROPRIATE MACHINERY	53
4.1	BOILER	54
	4.1.1 Selection of the boiler	55
4.2	CYLINDER	55
	4.2.1 Selection of the Cylinder	- 56
4.3	BURNER	57
	4.3.1 Selection of burner	57
4.4	Selection of nozzle	57
4.5	FUEL OIL TANK	58
	4.5.1 Selection of oil tank	59
4.6	PUMPS	59
	4.6.1 Selection of Pumps	65
4. 7	EXPANSION TANK	66
	4.7.1 Expansion Tank Selection	67
4.8	CHIMNEY	68
	VALVES	70
) OIL FILTER	70
	I FUEL OIL TANK	70
	2 COPPER PIPE	70
	3 RADIATOR	71
	PROGRAMMED TIME SWITCH	71
	5 ROOM THERMOSTAT	71
	5 PRESSURE GAUGES	71
	7 THERMOMETERS	72
4.18	AUTOMATIC AIR VENTS	72
<u>CHA</u>	PTER 5 - COST ANALYSIS	73
5.1	COST ANALYSIS	74

CHAPTER 6 - PREVENTIVE MAINTENANCE SCHEME		76
6.1	INTRODUCTION	77
6.2	BOILER MAINTENANCE	77
6.3	BURNER MAINTENANCE	77
6.4	PUMPS MAINTENANCE	78
6.5	PIPE AND RADIATOR MAINTENANCE	78
CON	CLUSION	79
APPE	INDICES	89
REFE	CRENCES	162
DRAWINGS		163

,

List of Tables

		Page
Table 1.1	U-value of structure item	26
Table 1.2	Table of Heat Losses ΠΙΝΑΚΑΣ ΘΕΡΜΑΝΤΙΚΩΝ ΣΩΜΑΤΩΝ ΒΡΕΦΟΠΑΙΔΟΚΟΜΙΚΟΥ	29
Table 3.1a	ΣΤΑΘΜΟΥ	45
Table 3.1b	ΠΙΝΑΚΑΣ ΘΕΡΜΑΝΤΙΚΩΝ ΣΩΜΑΤΩΝ ΝΗΠΙΑΓΩΓΕΙΟΥ	46
Table 3.3.1a	Pipe Sizing (ZΩNH 1)	50
Table 3.3.1b	Pipe Sizing (ZΩNH 2)	51
Table 3.3.1c	Pipe Sizing (ZΩNH 3)	52
Table 4.6a	Index circuit for each pump (ZΩNH 1)	61
Table 4.6b	Index circuit for each pump (ZΩNH 2)	62
Table 4.6c	Index circuit for each pump (ZΩNH 3)	64
Table 4.6.1	Selection of Pumps	65
Table 4.8	Coefficient of the form of the chimney	69
Table 5.1	Cost Analysis	74
	Calculation of the heat losses (BPEDOIIAIAOKOMIKOY ETAOMOY)	95
	Calculation of the heat losses (NHΠΙΑΓΩΓΕΙΟΥ)	107

Acknowledgments

I would like to express my gratitude and appreciation to my Project Supervisor Mr. Theodoros Symeou for the valuable help and guidance in the preparation and completion of this project.

I would also like to thank my family who were always there for me when I needed their support and help during my studies and the preparation of this project.

,

ABSTRACT

The main objective of this project is the design of a Central Heating System and water supply services for a school.

School consisting of two floors located in Nicosia.

The architectural drawings were supplied to me for this investigation where I had to find primary the heat losses of the specific building. Secondly, we must select the system to be employed in our school by taking in consideration the efficiency, the weather conditions of the location of the building, the hours where the school and also the cost.

Thirdly, in accordance with the heat losses calculated we choose the appropriate equipment of the system from various catalogues which are going to be used for this project.

Fourthly, come the cost analysis where there is a calculation of the expenses of the project, by taking in consideration each supply used separately, in order to find the total amount of the cost of the system to be employed.

Fifthly, there is a chapter presenting a preventive maintenance scheme for the equipment employed in our Central Space Heating System.

Finally, there are details drawing for the installation of the system which present the position of the radiators, of the boiler room, the arrangement of the piping of the system.

INTRODUCTION

The purpose of this project is to design a Central Heating System and water supply services for a school taken in consideration for needs of this project. The principle of the Central Heating System is to produce and maintain comfortable conditions in the internal space when the outside temperature has dropped below the comfortable level.

The number of heating systems is almost unlimited, if every combination of fuel, method of firing, transmission medium and type of emitting element is considered. Since the early eighty's Central Heating System is the most applicable method in contrast to fireplaces, gas-fires, and electric heaters. The development of Central Heating System during the past years has enabled the installation for domestic use.

In Chapter one, you can observe the calculations of the heat losses and also the estimations of the U-Value of the structure item. The heat losses are due to the difference between the design internal air temperature and the design external air temperature. As lower is the external air temperature as greater will be the energy consumption.

In the second Chapter, you can find the presentation of the methods of heating systems and a selection of the methods chosen for the present project. In our system, the heat is produced by the convention of the fuel and then the heat is transferred in the water and that water is distributed by the pumps through the pipes to the radiators. So, finally the heat is transmitted in our internal space, the room in our case.

The third and fourth Chapter, contain the appropriate machinery, as radiators, pipes, cylinder, boiler and burner chosen for our system to be employed in the specific school. This selection of equipment is guided by our calculations of the heat losses above in the first chapter and also by the various catalogues of the manufactures.

In the fifth Chapter, you can observe the analysis cost, which means a detail report of the expenses of each material used in the Central Space Heating System and Water supply services for a school to be employed and a total amount of the cost is calculated for the specific building taken in consideration for the present project.

Lastly, in the sixth Chapter, there is a survey of the ways of maintaining the central heating system and the boiler room. This information is useful for the technicians who will be responsible for the maintenance of the Central Heating System in general and more precisely for the boiler room.

At the end, there is a presentation of detail drawings for the installation of the Central Heating System and Water supply services, where the arrangements of the pipes, the position of the radiators and the boiler room are shown.