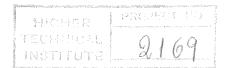
HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURCE


DIPLOMA PROJECT

SAG AND TENSION OF OVERHEAD LINES

ZANDIS ANDREAS

E/881

1993

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Mr. Ch. Chrysaphides, to Mr. Venizelos Efthymiou and to all the staff of the Electricity Authority of Cyprus for their quidance and co-operation during the project period.

Furthermore I would like to express my thanks to:

- AMIGA 1200 for it's excellent programs
- -VAVEL COMPUTERS for their help
- -Kypros and Maria for there help and support
- -Doros for his help for the printing of the project
- -Emma for the help in writing the project
- -Nicos for his advices
- -Coca-Cola goes with everything
- -All the persons who help in any way.

ABSTRACT

This project deals with the Erection sag and tension of overhead power transmission lines.

To get familiar with the problem of the erection sag and tension of the transmision lines, we went to Limassol and we have seen erection of transmission lines as practice by the personnel of the Electricity Authority of Cyprus.

CONTENTS

	PAGE
INTRODUCTION	IIX
CHAPTER 1:SUPPLY SYSTEM LAYOUT	1-7
1.1:High voltage transmission	1
1.2:High voltage direct current transmission	1
1.3:Typical AC transmission System	2
1.4:Criteria for design of overhead lines	5
CHAPTER 2:OVERHEAD LINE REGULATIONS	8-10
2.1:Overhead line regulations	8
CHAPTER 3:CONDUCTORS	11-19
3.1Conductors in general	11
Introduction	
3.2:Insulation matterials	11
3.2.1:Copper	12
3.2.2:Degree of hardness	12
3.2.3:Flexibility of copper	14
3.2.4:Aluminium	14
3.2.5:Aluminium conductor steel-reinforced	14
3.2.6:Steel	16
3.2.7:Copper-Clad steel	16
3.3:Others matterials	17
3.4:Characteristics of conductors materials	18

3.5Temperature coefficient of linear expansion	18
3.6:Insulated wires	19
CHAPTER 4:CONDUCTOR SAG AND TENSION	20-24
4.1:Correct sag and tension	20
4.2:Basic equations	20
4.3:Solution of catenary equation	21
4.4:Approximation solution-Equation of parabola	22
4.5:Effect on wind and ice	22
4.6:Effect of temperature on the elasticity	23
4.7:Solution of the cubic equation	23
CHAPTER 5:EVALUATION OF RESULTS	25-29
5.1:Introduction	25
5.2:Comparison of results	25
5.3:Calculations	25-29
CHAPTER 6:ERECTION PROCEDURE	30-37
6.1:Erection procedure	30
6.2:Handling conductors	30
6.3:Pulling up the conductors	33
6.4:Pre-stressing	35
6.5:Overtensioning	35
6.6:Checking for sag	36