-HIGHER TECHNICAL INSTITUTE-

DEPARTMENTOF CIVIL ENGINEERING DIPLOMA PROJECT

PRODUCTION, TRANSPORT

AND

LAVING OF ASPHALTIC CONCRETE

C/1029

BY: STYLIANOU MARIA

JUNE 2007

PRODUCTION, **TRANSPORT**

AND

LAYING OF ASPHALTIC CONCRETE

by

Stylianou Maria

Project report submitted to the

Department of Civil Engineering

of the Higher Technical Institute

Nicosia-Cyprus

in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 2007

" ESPECIALLY TO MY PARENTS AND TO PANTELIS"

AKNOWLEDGMENTS

I would like to take this opportunity to express my appreciation for the help, which I received during the preparation of this project report.

I would also like to express my thanks Mr. Economides, whose guidance and counseling helped me for the execution of this project.

Special thanks must be given to my family and friends who encouraged and supported me.

CONTENTS:

PAGE:

1.	SUMMARY	2
2.	INTRODUCTION	4
3.	CHAPTER 1: Elements of a flexible pavement	7
4.	CHAPTER 2: Desirable properties of dense bituminous mixtures	12
5.	CHAPTER 3: Mechanical testing of bitumen	18
6.	CHAPTER 4: The production of asphaltic concrete	23
7.	CHAPTER 5: Pavement Design	44
8.	CHAPTER 6: Transport of asphaltic concrete	53
9.	CHAPTER 7: Mix placing	76
10	CHAPTER 8: Compaction	84
11	CONCLUSIONS	93
12. PICTURES		
13.REFERENCES 1		

Figure 1.1	Layers of a flexible pavement	page 8		
Figure 1.2	Different types of a road construction	page 11		
Figure 3.1	Penetration test	page 19		
Figure 3.2	The softening point test	page 20		
Figure 3.3	The Fraass breaking point test	page 21		
Figure 4.1.1.a	An asphalt plant at night	page 24		
Figure 4.1.1.b	Cold feed holding bins	page 25		
Figure 4.1.1.c	Aggregate heater/dryer	page 25		
Figure 4.1.1.d	Schematic diagram of an indirectly heated batch mix plant	page 26		
Figure 4.1.1.e	An indirectly heated batch mix plant	page 26		
Figure 4.1.3.a	A drum-mix plant	page 27		
Figure 4.1.3.b	A modern drum-mix plant	page 28		
Figure 4.1.3.c	Automatic electronic controlled system of asphalt plant	page 28		
Figure 4.2.1.a	Seggregation of aggregates in hot bins	page 31		
Figure 4.2.1.b	Stockpiling aggregates	page 32		
Figure 4.2.1.c	Power shovel during loading aggregates from stockpiles	page 32		
Figure 4.2.1.d	Power shovel	page 33		
Figure 4.2.1.e	Procedure by which the power shovel unloads aggregates into	o hoppers		
Figure 4.2.1.f	Hoppers to receive aggregates from stockpiles	page 34		
Figure 4.2.1.g	Cold feed system	page 34		
Figure 4.3.1.a	Overfilled pugmill	page 35		
Figure 4.3.1.b	Underfilled pugmill	page 35		
Figure 4.3.3.a	Typical arrangement of plant scales	page 36		
Figure 4.3.4.a	Automatic controls for batch plant	page 37		
Figure 4.3.5.a	Typical drum-mix plant	page 38		
Figure 4.3.5.c	Basic drum mix plant	page 39		
Figure 4.3.5.d		page 41		
Figure 4.3.5.e	Hot-mix storage silos	page 42		
Figure 5.2	The relation between the applied load and the penetration of t	he plunger		
(page 52)				
Figure 6	Plywood cover over insulation on haul truck	page 58		
Figure 6.1.1	End-dump truck	page 59		
Figure 6.1.2	Bottom-dump truck	page 59		
Figure 6.1.3	Live-bottom truck	page 59		
Figure 6.1.4	I ruck ready for loading with hot-mix asphalt mixture	page 61		
Figure 6.1.5	Hot-mix asphalt mixture discharged into a truck	page 62		
Figure 6.2	Measuring temperature of mix in the truck	page 62		
Figure 6.2.8.a	Inspection records	page 68		
Figure 6.2.8.b	Inspection records	page 68		
Figure 6.2.9	Hardening of bitumen on the road	page 69		
Figure 6.3	The effect of void content on the hardening of	page 70		
bitumen on the road				
Figure 6.3.1	Protective clothing worn during bitumen delivery	page 71		
Figure 6.4.3.a	I oo little tack coat	page 74		
Figure 6.4.3.b	Too much tack coat	page 74		
Figure 7.1.a	A close view of the receiving hopper of the paver	page 80		
Figure 7.1.b	A truck during unloading of hot-mix asphalt into the	page 80		
receiving hopper of typical paver				
Figure 7.2.a	A close view of the screed unit	page 82		
Figure 8.1.a	A view of a typical two-wheeled tandem roller	page 89		
Figure 8.1.b	A pneumatic-tired roller during rolling operations	page 90		
Figure 8.1.c	Another view of a typical pneumatic-tired roller	page 90		
Figure 8.1.d	Combination of rolling operations	page 91		

SUMMARY:

The purpose of a flexible pavement is to produce a structural system that will carry traffic conveniently and safely at minimum cost.

The performance of a bituminous mixture is influenced by some factors such as flexibility, durability, workability, stability, impermeability and stiffness.

For the procedure of production of bituminous mixtures two types of plants are used: the batch plants and the drum-mix plants. Despite the fact that in these plants the procedure takes time their purpose is to produce bitumen containing the desired proportions of bitumen and aggregate and satisfying all the specifications.

Bitumen is delivered on site by trucks. Trucks are designed properly so that they deliver and discharge material properly into the paver.

The placing process is very important such as the compaction at the end because the life cycle of the pavement depends at a large rate to these two factors. Having a good mix design is not enough for the workability of the pavement; a good compaction process is demanded.