PRODUCTION AND TESTING OF ROAD BITUMEN

by Zavou Andronikos

Project Report submitted to the Department of Civil Engineering of the Higher Technical Institute

NICOSIA - CYPRUS in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER in

CIVIL ENGINEERING

June 1994

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my project supervisor, Mr I. Economidies for his valuable help and quidance during the preparation of this report.

Further I would like to thank Mr J. Sophos for accepting to be my external assessor, and all those who have given me all the necessary quidance and help throughout my three years of studies at the Higher Technical Institute.

Finally I would like to thank Michael and Meropi who have undertaken the resposibility of carrying through all the typing work of the project, and all those, who in anyway helped in the writing and presentating of this project.

SUMMARY

Bitumen is man's oldest enginnering material. Nowadays it is being widely used for a great variety of purposes especially in roads construction. The object of this project is to analyse both production and testing of road bitumen.

In the introduction, through a general historical view, we see how Asphalt-Bitumen was used decades ago and its evolution in road development. We also give a description of the different types of binder.

Firstly, we describe two different processes involving the manufacture of the bitumen: fractional distillation of crude oil and air blowing of short residues, and then we analyse how bitumen should we stored and handled at the right temperature possible, for best results.

After discussing the four mostly manufactured types of bitumen, we state the essential properties required for satisfactory bitumen quality. The uses of bitumen emulsions are also included in this project.

In chapter 6, mechanical testing is described and properties of bitumen. We give a brief explanation of tests performed on bitumens and to apply in practice all the theoritical knowledge we have followed the penetration test in order to measure the consistency of the material.

Finally we analyse bitumen constitution, rheology, structure and also the relationship between the first two and the inluence at bitumen properties on performance in practice.

CONTENTS

ACKNOWLEDGMENTS		Page VI
SUMMARY		VII
1. INTROD	DUCTION	
1.1.	Historical review	2
1.2.	Uses of bitumen	3
1.3.	Different types of binder	6
	1.3.1. Lake asphalt	6
	1.3.2. Rock asphalt	7
	1.3.3. Tar	7
	1.3.4. Bitumen	9
2. THE MA	NUFACTURE OF BITUMEN	
2.1.	Fractional distilation of crude oil	11
2.2.	The air blowing of short residues	13
3. STORAG	GE AND HANDLING TEMPERATURES OF BITUMEN	
3.1.	Bitumen tank	16
3.2.	Storage and pumping temperatures	17
4. BITUME	EN SPECIFICATION AND QUALITY	
4.1.	Penetration grade bitumen	21
4.2.	Oxidise grade bitumen	22
4.3.	Hard bitumens	23
4.4.	Cutback bitumens	24
4.5.	Bitumen quality	25
5. BITUMEN EMULSIONS		28
5.1.	Uses of bitumen emulsions	29
5.2.	Bitumen emulsion in road mixes	29
6. MECHA	NICAL TESTING AND PROPERTIES OF BITUMENS	
6.1.	Standard specification tests for bitumen	32
	6.1.1. The penetration test	32

	6.1.2. Softening point test	34
6.2.	The Fraass breaking point test	35
6.3.	Viscosity	36
6.4.	The bitumen test data chart	39
	6.4.1. Class S bitumen	42
	6.4.2. Class B bitumen	42
	6.4.3. Class W bitumen	43
6.5.	Temperature susceptibility - Penetration Index	44
6.6.	Experimental work	45
6.7.	Engineering properties of bitumen	49
	6.7.1. The stiffness concept	49
	6.7.2. Determination of the stiffness	
	modulus of bitumen	50
	6.7.3. Tensile strenght	52
	6.7.4. Fatigue "strenght"	53
	N CONSTITUTION, STRUCTURE AND RHEOLOGY	
7.1.	Bitumen constitution	56
7.2.	Bitumen structure	57
7.3	The relationship between constitution and rheology	59
7.4.	The relationship between broad chemical composition	
	and physical properties.	59
PERFOR	LUENCE OF BITUMEN PROPERTIES ON MANCE ON PRACTICE	
8.1.	The influence of bitumen properties during	
	construction	64
	8.1.1. Mixing and trasport	64
0.0	8.1.2. Laying and compaction	66
8.2.	Performance at high service temperatures	66
	8.2.1. Permanent deformation	66
0.0	8.2.2. Fatting - up	67
8.3.	Performance at high service temperatures	67 (7
	8.3.1. Cracking	67
CONCLUSIONS		69
REFERENCES		71