HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT

SAFETY MEASURES AND PROCEDURES IN A MENTAL WORKING INDUSTRY

M/868

BY: THEODOROU DOROS (3M2)

parpo

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING

DEPARTMENT

DIPLOMA PROJECT

SAFETY MEASURES AND PROCEDURES IN A METALWORKING INDUSTRY

Project Number: M/868 Student: THEODOROU DOROS (3M2)

JUNE 1999

3034

SAFETY MEASURES AND PROCEDURES IN A METALWORKING INDUSTRY

By

THEODOROU DOROS

PROJECT REPORT

Submitted to

The department of Mechanical Engineering

for the diploma of

TECHNICIAN ENGINEER

In

MECHANICAL ENGINEERING

June 1999

3034

Dedicated to my

parents for everything

they have done for me!

CONTENT

PAGES

ACKNOWLEDGEMENTS SUMMARY INTRODUCTION

CHAPTER 1: META	L TUBES CONSTRUCTION DEPARTMENT	
Introduction		1
1.	SHAPED TUBE WELDING PLANT	2
1.1.	Description of the plant	2
1.2.	Strip preparation	2
1.3.	Profiling machine	3
1.4.	HF-Welding machine	3
1.5.	Calibrating machine	3
1.6.	Saw and dicharge roller	3
1.7.	Auxiliary equipment	4
	1.7.1 Emulsion plant	4
	1.7.2 Operating tools	4
1.8 Ge	neral work	8
1.9 Cu	rrent checks by the Operating Personnel and Safety	
In	structions	9
<u>*</u>	1.9.1 Current checks by the operating personnel	9
	1.9.2 Safety instructions	10
1.10 G	eneral Hints and Safety Instructions	11
	1.10.1 General hints	11
	1.10.2 Safety instructions	12
1.11 L	ubrication	13
1.12 P	atrol	13
1.13 P	reventive maintenance	14
1.14 H	lints for mounting and dismounting	16

1.14.1 General hints and safety instructions	16
1.14.2 Dismounting of the saw carriage	17
2.0 TRANSPORTATION BY MEANS OF A FORKLIFT	19
2.1 Fork-lift safety	19
2.2 Useful operation tips	20

CHAPTER II: MAINTENANCE DEPARTMENT

3.1 Introduction	44
3.2 Machines included in the department	44
3.3 Grinding machine	44
3.3.1 Description	44
3.3.2 Principal hazards of grinding	45
3.3.3 Safety precautions	45
3.4 Milling machine	46
3.4.1 Description	46
3.4.2 Guarding	46
3.4.3 Proposed safeguard	47
3.4.4 Safety precautions	47
3.5 Planning machine	48
3.5.1 Description	48
3.5.2 Guarding	48
3.5.3 Safety precautions	49
3.6 Hand press	49
3.6.1 Description	49
3.6.2 Safety precautions	49
3.7 Drilling machine	51
3.7.1 Description	51
3.7.2 Guarding	52
3.7.3 Proposed safeguard	57
3.7.4 Safety precautions	57
3.8 Automated saw	58

3.8.1 Description	58
3.8.2 Safety precautions	58
3.9 Lathes	59
3.9.1 Description	59
3.9.2 Safety precautions	59

CHAPTER III: HOT-DIP GALVANISING DEPARTMENT

4.1 Introduction	61
4.2 Description of the process	61
4.2.1 Caustic cleaning (Presoak)	61
4.2.1.1 Tank recharging	62
4.2.2 Pickling	64
4.2.3 Fluxering	65
4.2.3.1 Safety precautions	65
4.2.4 Hot-dip galvanizing	66
4.2.4.1 Safety precautions	66
4.3 Minimize accident possibility in the department	67
4.3.1 What are some of the questions you should be	
asking yourself to prevent an accident involving you	? 67
4.4 What can you do to prevent accidents in the department	? 70
4.5 First-aid instructions.	71

CHAPTER IV: ERGONOMICS

5.1 Introduction	74
5.2 Anthropometry	74
5.3 Biomechanics	75
5.4 Ergonomics applied to machines and controls	77
5.5 Working positions – standing	80
5.6 The amount / quantity of work	83
5.6.1 Heavy physical work	83

5.7 Lifting and carrying	
5.8 Lighting	87
5.8.1 Daylight artificial light	87
5.9 Noise	
5.9.1 Noise reduction	89

CHAPTER V: THE ROLE OF A SAFETY OFFICER

6.0 PROCEDURES AND RENSPONSIBILITIES FOR A SAFETY OFFICER AND CHARTS FOR POSSIBLE COMMUNICATION WITH MANAGEMENT AND OPERATIVES.

6.1 Introduction		92
6.2 Safety direction		93
6.2.1 Duties	and responsibilities of the safety officer	95
6.2.2 Proced	ures for a safety officer.	98
6.2.2.1 Inspection techniques		99
	6.2.2.1.1 Inspection checklists	100
	6.2.2.1.2 Inspection of work areas	104
	6.2.2.1.3 Periodic inspections	105
	6.2.2.1.4 Inspection of work practices	105
6.2.2.2	2 Control Procedures	106
	6.2.2.2.1 Posters and displays	108
6.2.2.2.1.1 Purpose of posters a		
	displays	108
	6.2.2.2.2 Courses and demonstrations	110
	6.2.2.2.3 Newsletters	111
6.3 Conclusions		112
CHAPTER VI: COST ESTIMATIO	N	
CHAPTER VII: CONCLUSIONS		
REFERENCES	·	
DRAWINGS	1	

ACKNOWLEDGEMENTS

As the author of that project, I strongly feel the need to thank:

Mr D. ROUSHAS as my supervisor for his valuable advice throughout the development of the project.

The management and personnel of "BMS Metal Tubes" Industry for all their help.

The safety inspector of the Ministry of Labour Mr. ATHOS CHARALAMBOUS.

My friend Athanasiou Charalambos for his valuable help.

And finally my family that provided me the psychological support for the development of the project.

SUMMARY

This project deals with the design of health and safety procedures for the "BMS Metal Tubes" Industry in Cyprus.

The project covers the following departments of the factory:

- 1) Metal Tubes Construction Department
- 2) Galvanizing Department
- 3) Maintenance Department

An attempt was also made to raise an important factor that affects health conditions in factories, that is, the ergonomics.

Finally, since the role of a Safety Officer is of high importance, procedures and responsibilities were described to be followed by such an Officer. Proper checklists were also given in order to help in the promotion of safer and easier work conditions.

INTRODUCTION

Accidents have always been with us and have been caused by unsafe conditions and unsafe acts. On the job, there have always been workers who were proud of their ability to lift very heavy objects, bend iron bars, and other feats of strength, balance or exhibitionism. They believed that safety was "sissy". By today's concept of safe performance, risk taking at the work is not only unnecessary, but unacceptable.

There is no doubt that the most important single reason for accidents at the work is apathy.

Safety is mainly a matter of the day – to – day attitudes and reactions of the individuals. If individual experience is not conducive to safety awareness, then safety awareness must be deliberately fostered by as many specific methods as can be devised.

More effective safety awareness in industry can only be developed by an accumulation of influences and pressures (on):

- 1. President or owner
- 2. Senior manager
- 3. Safety officer (Supervisor)
- 4. Trade unions
- 5. Workers

Apathy is the greatest simple contributing factor to accidents at work. This attitude will not be cured as long as people are encouraged to think that safety

and health at work can be an over-expanding body of legal regulations enforced by an ever increasing army of inspectors.

Usually discussions about training for safety and health tend to remain at an abstract and generalized level ... an integral part of job training generally ... or specialized training taught separately. In the normal job training of every operative, there should be instruction in the potential hazards of the job as well as in the general principles of safe working ... explicit with due emphasis.

It is equally clear that specialized training in safety matters is needed for particular categories such a managers, safety matters but also to emphasize that:

- a) Every employer should realize that by ensuring safety in every activity of his factory, not only prevents accident causing, but also contributes to the increase of production rate, quality of products and thus increase the profits too.
- b) Every employee should have in mind that he must be properly trained, have also knowledge about the hazards of his job, be responsible and pay attention to his job so as to be able to fulfill its objectives and responsibilities in the factory without risking his life or the life of his colleagues.

When this two factors are completely fulfill in every factory then I am sure, a great step will be made in diminishing industrial accidents.

.