HIGHER TECHNICAL INSTITUTE

TECHNICIAN ENGINEER DIPLOMA COURSE IN MECHANICAL ENGINEERING TECHNOLOGY

DIPLOMA PROJECT

"DESIGN OF A PORTABLE FRICTION WELDING DEVICE FOR PLASTIC PIPES"

BY

KOULERMOS ANDREAS

M/1044 JUNE 2008

DESIGN OF A PORTABLE FRICTION WELDING DEVICE FOR PLASTIC PIPES

by

Andreas Koulermos

Project report submitted to the

Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements for the

diploma of

TECHNICIAN ENGINEER

In

Ļ

MECHANICAL ENGINEERING

June 2008

SUMMARY

The main objective of this dissertation is to carry out a survey on existing methods for the welding of plastic pipes and in addition to choose the materials to design a portable friction welding device for plastic pipes. This machine will be based on a revolutionary friction welding method which refers to a range of techniques that rely on a relative motion between the thermoplastic parts to be joined. While a force is applied between them at the interface, the material is caused to heat and melt which will lead to the weld of the two parts.

The area of investigation is focused on the welding methods of plastics and in more thorough examination of the friction welding processes. This will lead to the best solution of the objective and by taking in consideration all the facts the machine will be designed. During my research I investigated an interesting device at CNE Technology which was the first machine of its kind that was build globally and gave results that were very impressive. My model is going to be pretty similar to it and it will be able to provide in industry faster throughput production times specifically when the work takes place out of the workshop.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my director of studies Dr. Lazaro Lazari, Lecturer, Higher Technical Institute, for his help, advice, support and valuable feedback given throughout my dissertation research. I also appreciate the help of Dr Panayiotis Philimis, Technical Director, CNE Technology for his valuable suggestions.

1

CONTENTS

			Page
SPEC	CIMEN		i
ABSTRACT			ii
ACKNOWLEDGMENTS			iii
CONTENTS			iv
LIST OF FIGURES/TABLES		1	vi
ABB	REVIATIONS		vii
<u>CHA</u>	PTER 1 - INTRODUCTION TO THE PROJECT		1
1.1	AIMS AND OBJECTIVES		1
1.2	HISTORICAL APPROACHES		1
1.3	METHODOLOGY		2
CHAPTER 2 - THEORY OF PLASTIC WELDING			3
2.1	INTRODUCTION		3
2.2	WELDABILITY of PLASTICS		8
2.3	COMPARISON of METHODS		10
2.4	CONCLUSION		11
СНА	PTER 3 - FRICTION WELDING		12
3.1	INTRODUCTION		12
3.2	BENEFIT		12
3.3	HISTORY OF FRICTION WELDING		13
3.4	TECHNIQUES		14

CHAPTER 4 – DESIGN OF FRICTION WELDING DEVICE			36
4.1	SELECTION OF PROCESS		36
4.2	DESIGN CHARACTERISTICS AND SPECIFICATIONS		36
4.3	MOTOR CHARACTERISTICS		37
4.4	GEARBOX CALCULATIONS		39
4.5	SELECTION of MATERIALS		40
CHA	CHAPTER 5 - DISCUSSION & CONCLUSION		
<u>REF</u>	ERENCES		42
APP	APPENDICES		
APP	APPENDIX A: ENGINEERING DRAWINGS		43
APP	APPENDIX B: CNE TECHNOLOGY PAPERS		
APPENDIX C: BOSTON GEARS LTD CATALOG			50

ł

LIST OF FIGURES/TABLES

Table 2.1: Weldability of Thermoplastic materials		9
Table 2.2: Advantages & Disadvantages of Welding Processes		10
Figure 3.1: Process of spin welding		14
Figure 3.2: The phases of the spin welding process		15
Figure 3.3: The principle of linear vibration welding		20
Figure 3.4: Taillights joined by linear friction welding	!	20
Figure 3.5a: Typical Linear Vibration Welding machine		22
Figure 3.6: Linear Vibration Welding Melt Phases		24
Figure 3.7: An example of a typical linear friction welding machine		24
Figure 3.8: Typical Joints achieved with Vibration welding		26
Figure 3.9: A series of enclosed orbital weld heads		27
Figure 3.10: Basic parts/terminology of friction stir welding		32
Figure 3.11: Friction Stir Welding close-up		34
Figure 3.12: joints that can be achieved with Friction stir welding		34
Table 4.1: Specifications of motor		38
Figure 4.1: Gearbox schematic diagram		39

į,

ABBREVIATIONS

FW: Friction Welding FSW: Friction Stir Welding PVC: Polyvinyl Chloride PA: Polyamides **RPM:** Revolutions Per Minute FSSW: Friction Stir Spot Welding FSP: Friction Stir Processing **RSW:** Resistance Spot Welding GTAW: Gas Tungsten Arc Welding TWI: The Welding Institute ABS: Acrylonitrile Butadiene Styrene ASA :Acrylic-Styrene-Acrylonitrile CA: Cellulose Acetate CAB: Cellulose Acetate Butyrate CAP: Cellulose Acetate Propionate POM: PolyOxy-Methylene PA: PolyAmide PBT: PolyButylene Terephthalate PC: PolyCarbonate

ABBREVIATIONS

Į

FW: Friction Welding

FSW: Friction Stir Welding

PVC: Polyvinyl Chloride

PA: Polyamides

RPM: Revolutions Per Minute

FSSW: Friction Stir Spot Welding

FSP: Friction Stir Processing

RSW: Resistance Spot Welding

GTAW: Gas Tungsten Arc Welding

TWI: The Welding Institute

ABS: Acrylonitrile Butadiene Styrene

ASA : Acrylic-Styrene-Acrylonitrile

CA: Cellulose Acetate

CAB: Cellulose Acetate Butyrate

CAP: Cellulose Acetate Propionate

POM: PolyOxy-Methylene

PA: PolyAmide

PBT: PolyButylene Terephthalate

PC: PolyCarbonate

Į.