WIND DIRECTION INDICATOR

Project Submitted by MARIOS A. CONSTANTINOU

In part Satisfaction of the award of Diploma of Technician engineer in Electrical engineering of the HIGHER TECHNICAL INSTITUTE CYPRUS

Project Supervisor: Dr C. Marouchos Lecturer in Electrical Engineering, H.T.I

External assessor: Mr Nicos Mateou Type of Project: Individual

JUNE 1993

2149

HIGHER TECHNICAL

INSTITUTE

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my parents for their moral and financial support during the three year course at the H.T.I.

I express my thanks to my twin brother Yiannos, also third year student at the H.T.I. for his cooperation during our studies and his help in the construction.

I would also like to express my thanks and gratitude to my supervisor Dr C. Marouchos for his helpful guidance and assistance during the project period. I also wish to him a successful Career at the H.T.I since this is his first year at the Institute.

I also thank Mr. Ch. Theopemptou and Mr S. Hadjioannou for their help in the troubleshooting.

My sincere thanks to my friends Michalis Georgiades and his family for letting use their computer, Michalis Valiantis for his help in the construction of the mechanical part and the family friend Mr. Pieris Pierides for the materials supplied to me.

Ι

ABSTRACT

This project deals with the design construction and testing of a wind direction Indicator. Such instruments are used in navigation, meteorology, astronomy etc.

There are several kinds of "Wind Direction indicators", mechanical, with an airbag etc.

Over the years the need of an electronic instrument has risen. The "Wind Direction Indicator" presented in this work can be used for navigational and meteorological purposes. The instrument is designed to be powered by a power supply with a range of output voltages from 5V to 12V, battery or even a solar cell if it can supply the necessary voltage and current.

CONTENTS

ACKNOLEDGEMENTS			
ABSTRACT			
INTRODUCTI	ON	1	
CHAPTER 1:	INVESTIGATION FOR MEASURING		
	SYSTEMS AND TRANSDUCERS	3	
	1.1. The measuring system	4	
	1.1.1. The transducer	4	
	1.1.2. The signal conditioning circuit	5	
	1.1.3. Recorder or display	5	
	1.1.4. Interference and screening	6	
	1.2. Transducers	7	
CHAPTER 2:	POSITION TRANSDUCERS	10	
	2.1. Potentiometric divices	12	
	2.2. Synchors	15	
	2.3. Shaft encoders	17	
	2.3.1. Incremental shaft encoders	17	
	2.3.2. Absolute shaft encoders	24	
	2.4. Contact encoders	29	
	2.5. Electromagnetic encoders	30	
	2.6. Rotational differencial transformer	31	
	2.7. Optical encoders	32	
	2.8. Complete displacement measuring Systems	37	
	2.8.1. Digital angulal displacement System	37	
	2.8.2. Measurement of the displacement of an		
	aerofoil	37	
	2.8.3. Miniature shaft encoder	38	
	2.9. Decision making	39	

CHAPTER 3: DESIGN AND CONSTRUCTION OF A WIND DIRECTION

INDICATOR	41
Introduction	
Block diagram	
The operation	44
The measuring instrument	46
3.1. The transducer	46
3.2. UP/DOWN detector	48
3.3. 12-bit BCD counter	51
3.4. Reseting latches	52
3.5. The indicator	53
3.6. The logic family	55
3.7. The PCB	58
3.8. Interference and screening	59

CHAPTER	4:	TESTING AND CONCLUSIONS	61
		4.1. Testing	62
		4.1.1. PCB2	62
		4.1.2. PCB1	63
		4.1.3. Overall testing	64
		4.2. Conclusions	65

68

CHAPTER 5: COSTING

APPENDIX 1:	Experiment (The opto - switch beamwidth)
APPENDIX 2:	PCBS, and circuit diagrams
APPENDIX 3:	Commercial shaft encoders
APPENDIX 4:	IC's, Displays and opto - switches
	(Data Sheets)

REFERENCES